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Typical NMF Method

min
F,G

∥∥X − FGT∥∥2
F

s.t. F ≥ 0, G ≥ 0 (1.1)

where X ∈ Rd×n+ is a data matrix with d features and n samples.

F ∈ Rd×c+ can be viewed as cluster centroids, and G ∈ Rn×c+ can
be viewed as clustering indicator matrix.

Converges slowly: hundreds of iterations

High computational cost: involves large matrix multiplication
in each iteration

Soft clustering: need post processing step to get the final
clustering results.

Not robust to outliers
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New Fast Robust NMF and NMTF Model

RFNMF L1 min
F≥0,G∈Ind

∥∥X − FGT∥∥
1

(2.1)

RFNMF min
F≥0,G∈Ind

∥∥X − FGT∥∥
2,1

(2.2)

RFNMTF min
F∈Ind,G∈Ind,S≥0

∥∥X − FSGT∥∥
1

(2.3)

where G ∈ Ind or F ∈ Ind indicates that G and F are indicator
matrices, i.e. gij = 1 if xi belongs to class j, and gij = 0
otherwise.

Converges fast

Light computation in each iteration: simple meadian finding
plus label assignment

Hard clustring: no post processing step

Robust to outliers using `2,1/`1 loss functions
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Laplacian Noise Interpretation for RFNMF L1

xi = αi + σi (2.4)

where αi is the unobservable true data, in NMF clustering it is the
clustering centroid, i.e. αi = FGTi. , Gi. ∈ Ind. σi is the noise.
Suppose noise is drawn from Laplacian distribution with zero mean:

p(xi|αi) =
1

2b
exp(−

‖xi − αi‖1
b

) (2.5)

where b is the scale parameter of Laplacian distribution.
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Interpretation of NMF models

max
αi

log
N
Π
i=1

p(xi|αi)⇒ max
αi

−1
b

N∑
i=1
‖xi − αi‖1

⇒ min
αi

N∑
i=1
‖xi − αi‖1 ⇒ min

F,Gi.∈Ind

N∑
i=1
‖xi − FGi.‖1

⇒ min
F,G∈Ind

N∑
i=1
‖X − FG‖1 (2.6)

Similarily:

RFNMTF can be interpeted from a Laplacian distributed
noise, with α replaced by FSGi. instead of FGi.

RFNMF model can be interpreted from a Gaussian distributed
noise.
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Optimization Algorithm for RFNMF L1

Lemma

Considering the following objective function:

min
z

∑
i
|z − ai| (3.1)

The optimal solution of z is the median value of ai.

When G fixed:

min
F≥0

∥∥X − FGT∥∥
1

(3.2)

⇒ min
F≥0

∑
i

∥∥∥∥Xi. −
∑
k

FikG
T
.k

∥∥∥∥
1

⇒ min
F≥0

∑
i

∑
k

∑
Gjk=1

|Xij − Fik|
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Optimization Algorithm for RFNMF L1

The above problem can be decoupled as: for ∀i, k, solving:

min
Fik

∑
Gjk=1

|Xij − Fik| (3.3)

According to Lemma 1, the optimal solution of FiK can be
efficiently obtained by finding the median values of samples belong
to the k-th cluster.
When F fixed:

gij =

{
1 j = argmin

k
‖X.i − F.k‖1

0 otherwise
(3.4)
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Comparison Methods

(1) Standard NMF (NMF) [4]: solves the objective function in Eq.
(1.1).
(2) Orthogonal NMTF (OrthNMF) [2]: factorizes a matrix into
three non-negative components, and each column of the soft
indicator matrices (F and G) are required to be orthogonal.
(3) SemiNMF [1]: allows the basis matrix F in standard NMF to
be mix-signed
(4) Convex NMF (ConvNMF) [1]: restricts the basis matrix F into
a linear combination of original data points.
(5) Robust NMF (RNMF) [3]: replaces the loss measurement in
standard NMF from Frobenius norm to `2,1-norm, which makes the
model robust to outliers.
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Synthetic Data
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Figure: Clustering performance on synthetic data. Blue points and red
points are normal data drawn from two gaussian distributions. Black
points are outliers. Magenta points are computed cluster centroids.
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Synthetic Data

Table: Average distance from the centroids for normal data (blue and red
points in figure 1 (a)), outliers, and all data.

normal data outliers all data

NMF 6.02 10.82 6.09
Our methods 1.27 12.96 1.45
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Real World Data Sets
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Figure: (a): Clustering accuracy (b): objective value versus number of
iterations.
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Computational Time Comparison

Table: Computational time (in seconds) comparison. Averaged over 10
repetitions.

RFNMF L1 RFNMF RFNMTF NMF OrthNMTF SemiNMF ConvNMF RNMF K-means

DIGIT 3.57 5.98 12.13 54.89 243.27 46.98 55.47 264.22 1.72
HumanEva 5.79 49.32 23.63 67.64 2181.26 12.60 775.23 1626.69 2.23
YouTube 3.70 7.86 20.32 366.91 553.55 43.89 37.68 203.30 28.25

KTH 8.04 12.51 26.41 300.72 676.98 64.71 65.04 499.08 27.83
UCF 246.19 251.20 278.06 1974.57 3891.82 349.75 639.00 1580.65 163.20
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